Journal Article
Research Support, N.I.H., Intramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Single-tubule RNA-Seq uncovers signaling mechanisms that defend against hyponatremia in SIADH.

In the syndrome of inappropriate antidiuretic hormone secretion (SIADH), hyponatremia is limited by onset of vasopressin-escape caused by loss of the water channel aquaporin-2 in the renal collecting duct despite high circulating vasopressin. Here, we use the methods of systems biology in a well-established rat model of SIADH to identify signaling pathways activated at the onset of vasopressin-escape. Using single-tubule RNA-Seq, full transcriptomes were determined in microdissected cortical collecting ducts of vasopressin-treated rats at 1, 2, and 4 days after initiation of oral water loading in comparison to time-control rats without water loading. The time-dependent mRNA abundance changes were mapped to gene sets associated with curated canonical signaling pathways and revealed evidence of perturbation of transforming growth factor β signaling and epithelial-to-mesenchymal transition on Day 1 of water loading simultaneous with the initial fall in Aqp2 gene expression. On Day 2 of water loading, transcriptomic changes mapped to Notch signaling and the transition from G0 into the cell cycle but arrest at the G2/M stage. There was no evidence of cell proliferation or altered principal or intercalated cell numbers. Exposure of vasopressin-treated cultured mpkCCD cells to transforming growth factor β resulted in a virtually complete loss of aquaporin-2. Thus, there is a partial epithelial-to-mesenchymal transition during vasopressin escape with a subsequent shift from quiescence into the cell cycle with eventual arrest and loss of aquaporin-2.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app