Add like
Add dislike
Add to saved papers

Comparison of dicentric dose response curves of 6MV LINAC X-rays and 60 Co γ-rays for biodosimetry application.

In vitro Dicentric (DC) dose response curves of 6MV X-rays (3Gy/min) and60 Co γ-rays (0.63Gy/min) were generated and compared (intra-laboratory) to understand their similarities and differences. Human peripheral blood samples exposed to ten different doses (0, 0.05, 0.1, 0.25, 0.5, 1, 2, 3, 4 and 5Gy) of 6MV X-rays and60 Co γ-rays were subjected to Dicentric Chromosome Assay (DCA) and dicentrics, excess acentric fragments (AF) and chromatid breaks (CB) were scored. Totally about 31,553 metaphase spreads were scored for the purpose. Dose response curves of both radiation qualities were almost same except for a 13.8% higher β value for 6MV X-rays. However, blind tests results revealed that both these curves are biologically equivalent and exhibited good dose prediction accuracy for the entire dose range. This demonstrated the feasibility of interchangeable use of these curves in biodosimetry. Consequently it has been suggested that LINAC facilities worldwide can be roped in for biodosimetry capacity augmentation towards managing nuclear emergency situations involving γ-radiation exposures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app