Add like
Add dislike
Add to saved papers

The Parkinson's disease-associated GPR37 receptor interacts with striatal adenosine A2A receptor controlling its cell surface expression and function in vivo.

Scientific Reports 2017 August 26
G protein-coupled receptor 37 (GPR37) is an orphan receptor associated to Parkinson's disease (PD) neuropathology. Here, we identified GPR37 as an inhibitor of adenosine A2A receptor (A2AR) cell surface expression and function in vivo. In addition, we showed that GPR37 and A2AR do oligomerize in the striatum. Thus, a close proximity of GPR37 and A2AR at the postsynaptic level of striatal synapses was observed by double-labelling post-embedding immunogold detection. Indeed, the direct receptor-receptor interaction was further substantiated by proximity ligation in situ assay. Interestingly, GPR37 deletion promoted striatal A2AR cell surface expression that correlated well with an increased A2AR agonist-mediated cAMP accumulation, both in primary striatal neurons and nerve terminals. Furthermore, GPR37-/- mice showed enhanced A2AR agonist-induced catalepsy and an increased response to A2AR antagonist-mediated locomotor activity. Overall, these results revealed a key role for GPR37 controlling A2AR biology in the striatum, which may be relevant for PD management.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app