Add like
Add dislike
Add to saved papers

A novel ruthenium (II)-derived organometallic compound, TQ-6, potently inhibits platelet aggregation: Ex vivo and in vivo studies.

Scientific Reports 2017 August 26
Arterial thrombosis plays a key role in cardiovascular diseases. Hence, developing more effective antithrombotic agents is necessary. We designed a ruthenium (II)-derived complex, [Ru(η(6)-cymene)2-(1H-benzoimidazol-2-yl)-quinoline Cl]BF4 (TQ-6), as a new antiplatelet drug. TQ-6 (0.3 µM) exhibited extremely strong inhibitory activity against platelet aggregation, Src, and Syk phosphorylation stimulated by agonists in human platelets. In collagen-activated platelets, TQ-6 also inhibited ATP-release, [Ca(+2)]i, P-selectin expression, FITC-PAC-1 binding, and hydroxyl radical formation, as well as the phosphorylation of phospholipase Cγ2, protein kinase C, mitogen-activated protein kinases, and Akt. Neither FITC-JAQ1 nor FITC-triflavin binding or integrin β3 phosphorylation stimulated by immobilized fibrinogen were diminished by TQ-6. Furthermore, TQ-6 had no effects in cyclic nucleotide formation. Moreover, TQ-6 substantially prolonged the closure time in whole blood, increased the occlusion time of thrombotic platelet plug formation and bleeding time in mice. In conclusion, TQ-6 has a novel role in inhibiting platelet activation through the inhibition of the agonist receptors-mediated inside-out signaling such as Src-Syk-PLCγ2 cascade and subsequent suppression of granule secretion, leading to disturb integrin αIIbβ3-mediated outside-in signaling, and ultimately inhibiting platelet aggregation. Therefore, TQ-6 has potential to develop as a therapeutic agent for preventing or treating thromboembolic disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app