Add like
Add dislike
Add to saved papers

Small RNA profiles from Panax notoginseng roots differing in sizes reveal correlation between miR156 abundances and root biomass levels.

Scientific Reports 2017 August 26
Plant genomes encode several classes of small regulatory RNAs (sRNAs) that play critical roles in both development and stress responses. Panax notoginseng (Burk.) F.H. Chen (P. notoginseng) is an important traditional Chinese herbal medicinal plant species for its haemostatic effects. Therefore, the root yield of P. notoginseng is a major economically important trait since the roots of P. notoginseng are the parts used to produce medicine. To identify sRNAs that are critical for the root biomass of P. notoginseng, we performed a comprehensive study of miRNA transcriptomes from P. notoginseng roots of different biomasses. We identified 675 conserved miRNAs, of which 180 pre-miRNAs are also identified, and three TAS3 loci in P. notoginseng. By using degradome sequencing, we identified 79 conserved miRNA:target or tasiRNA:target interactions, of which eight were further confirmed with the RLM 5'-RACE experiments. More importantly, our results revealed that a member of miR156 family and one of its SPL target genes have inverse expression levels, which is tightly correlated with greater root biomass contents. These results not only contributes to overall understanding of post-transcriptional gene regulation in roots of P. notoginseng but also could serve as markers for breeding P. notoginseng with greater root yield.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app