Add like
Add dislike
Add to saved papers

Screening of pharmacokinetic properties of fifty dihydropyrimidin(thi)one derivatives using a combo of in vitro and in silico assays.

The heterocycles dihydropyrimidin(thi)ones have been under intensive pharmacological research, but their pharmacokinetic properties remain almost unknown. Herein, fifty dihydropyrimidin(thi)ones were submitted to in vitro screening tests using parallel artificial membrane permeability assays (PAMPA) to evaluate their apparent permeability (Papp) through intestinal membrane and blood-brain barrier models, and cell-based assays to assess their interference on the efflux transporter P-glycoprotein (P-gp). Moreover, a set of kinetic and toxicological parameters was also estimated employing a new computational tool, the pkCSM. The in vitro results suggested that 82% of the test compounds have good intestinal permeability (Papp>1.1×10-6 cm/s), and 66% of these are also expected to exhibit good permeability through blood-brain barrier (Papp>2.0×10-6 cm/s); these findings are consistent with a high transport rate by passive transcellular pathway. In both PAMPA models, thiourea derivatives presented higher Papp values than the respective urea analogues, which were further corroborated by in silico predictions. The in vitro results also suggested a low extent of plasma protein binding for all compounds (Papp<1.0×10-5 cm/s), and these findings were also supported by in silico data (unbound fraction ranging from 0.13 to 0.59). In addition, although approximately half of the compounds did not modulate P-gp at the tested concentrations (10 and 50μM), nine of them presented a trend to induce P-gp and particularly the chlorinated compounds exhibited a marked P-gp inhibition at 50μM. Furthermore, the in silico predictions suggested that half of the compounds have hepatotoxic potential. Overall, within this group of compounds, the thiourea derivatives containing an unsubstituted or a monosubstituted (NO2 , CH3 , OCH3 ) phenyl ring attached to the position 4 of the dihydropyrimidine ring represented the most promising structures and should be considered in the subsequent studies of the development of new structurally related drug candidates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app