Add like
Add dislike
Add to saved papers

Bisphosphonate-functionalized coordination polymer nanoparticles for the treatment of bone metastatic breast cancer.

Bone is the most common organ affected by metastatic breast cancer. Targeting cancers within the bone remains a great challenge due to the inefficient delivery of therapeutic to bone. In this study, a polyethylene glycol (PEG) coated nanoparticles (NPs) made of a Zn2+ coordination polymer was linked with a bone seeking moiety, alendronate (ALN), to deliver cisplatin prodrug (DSP) to the bone. The particle sizes of this novel system, DSP-Zn@PEG-ALN NPs, were regulated by adjusting the volume ratio of water phase to oil phase in microemulsion. It was small enough (about 55nm) to extravasate through the clefts (80nm) of the bone's sinusoidal capillaries and localize into metastatic bones. DSP-Zn@PEG-ALN NPs showed much higher affinity for hydroxyapatite in vitro and bone in vivo than non-targeted DSP-Zn@PEG NPs and cisplatin. In addition, the in vivo biodistribution studies demonstrated that about 4-fold of platinum was delivered to the bone metastatic lesions than that in healthy bones by DSP-Zn@PEG-ALN NPs intravenously. Finally, DSP-Zn@PEG-ALN NPs not only inhibited the tumor growth efficiently but also reduced the osteocalastic bone destruction. Besides, DSP-Zn@PEG-ALN NPs showed significantly reduced toxicity of cisplatin. These results indicate that the DSP-Zn@PEG-ALN NPs have a great potential in enhancing chemotherapeutic efficacy for the treatment of bone metastatic breast cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app