Add like
Add dislike
Add to saved papers

Laser carved micro-crack channels in paper-based dilution devices.

Talanta 2017 December 2
We developed novel laser carved micro-crack (LCC) paper-based channels to significantly accelerate the liquid flow without an external pump. For the aqueous solutions they increased the flow velocity 59 times in 16% laser power-8 micro-cracks-LCC channel compared with it in solely-printed channels. All experimental data from both LCC and solely-printed channels were well-fitted by the time-distance quadratic trinomial that we developed on laser power and micro-crack number. We designed and fabricated T-junction microstructures of LCCs. Further, the microfluidic paper-based analytical device (μPAD) of LCC on dye mixing gradient and pH gradient were developed with the characteristics, fast self-acting transportation and high-performance mixing of liquid flows. In the dye mixing gradient the time cost was reduced from 2355s in the solely-printed one to only 123s in the five-stage of this LCC-μPAD. It was useful for quick and long-distance transferences through the multiple units of μPADs. Certainly, this LCC-μPAD was inexpensive, disposable, portable and applicable to resource-limited environments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app