JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

New insights into olivo-cerebellar circuits for learning from a small training sample.

Artificial intelligence such as deep neural networks exhibited remarkable performance in simulated video games and 'Go'. In contrast, most humanoid robots in the DARPA Robotics Challenge fell down to ground. The dramatic contrast in performance is mainly due to differences in the amount of training data, which is huge and small, respectively. Animals are not allowed with millions of the failed trials, which lead to injury and death. Humans fall only several thousand times before they balance and walk. We hypothesize that a unique closed-loop neural circuit formed by the Purkinje cells, the cerebellar deep nucleus and the inferior olive in and around the cerebellum and the highest density of gap junctions, which regulate synchronous activities of the inferior olive nucleus, are computational machinery for learning from a small sample. We discuss recent experimental and computational advances associated with this hypothesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app