Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Disease Modifying Effects of the Spider Toxin Parawixin2 in the Experimental Epilepsy Model.

Toxins 2017 August 26
(1) Background: Temporal lobe epilepsy (TLE) is the most common type of epilepsy in adults. It is also the one with the highest percentage of drug-resistance to the current available anti-epileptic drugs (AED). Additionaly, most antiepileptic drugs are only able to control seizures in epileptogenesis, but do not decrease the hippocampal neurodegenerative process. TLE patients have a reduced population of interneuronal cells, which express Parvalbumin (PV) proteins. This reduction is directly linked to seizure frequency and severity in the chronic period of epilepsy. There is therefore a need to seek new therapies with a disease-modifying profile, and with efficient antiepileptic and neuroprotective properties. Parawixin2, a compound isolated from the venom of the spider Parawixia bistriata , has been shown to inhibit GABA transporters (GAT) and to have acute anticonvulsant effects in rats. (2) Methods: In this work, we studied the effects of Parawixin2 and Tiagabine (an FDA- approved GAT inhibitor), and compared these effects in a TLE model. Rats were subjected to lithium-pilocarpine TLE model and the main features were evaluated over a chronic period including: (a) spontaneous recurrent seizures (SRS), (b) neuronal loss, and (c) PV cell density in different regions of the hippocampus (CA1, CA3, DG and Hilus). (3) Results: Parawixin2 treatment reduced SRS frequency whereas Tiagabine did not. We also found a significant reduction in neuronal loss in CA3 and in the hilus regions of the hippocampus, in animals treated with Parawixin2. Noteworthy, Parawixin2 significantly reversed PV cell loss observed particularly in DG layers. (4) Conclusions: Parawixin2 exerts a promising neuroprotective and anti-epileptic effect and has potential as a novel agent in drug design.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app