Add like
Add dislike
Add to saved papers

Homophilic binding of the neural cell adhesion molecule CHL1 regulates development of ventral midbrain dopaminergic pathways.

Scientific Reports 2017 August 25
Abnormal development of ventral midbrain (VM) dopaminergic (DA) pathways, essential for motor and cognitive function, may underpin a number of neurological disorders and thereby highlight the importance of understanding the birth and connectivity of the associated neurons. While a number of regulators of VM DA neurogenesis are known, processes involved in later developmental events, including terminal differentiation and axon morphogenesis, are less well understood. Recent transcriptional analysis studies of the developing VM identified genes expressed during these stages, including the cell adhesion molecule with homology to L1 (Chl1). Here, we map the temporal and spatial expression of CHL1 and assess functional roles of substrate-bound and soluble-forms of the protein during VM DA development. Results showed early CHL1 in the VM, corresponding with roles in DA progenitor migration and differentiation. Subsequently, we demonstrated roles for CHL1 in both axonal extension and repulsion, selectively of DA neurons, suggestive of a role in guidance towards forebrain targets and away from hindbrain nuclei. In part, CHL1 mediates these roles through homophilic CHL1-CHL1 interactions. Collectively, these findings enhance our knowledge of VM DA pathways development, and may provide new insights into understanding DA developmental conditions such as autism spectrum disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app