Add like
Add dislike
Add to saved papers

Modeling the Pathophysiology of Phonotraumatic Vocal Hyperfunction With a Triangular Glottal Model of the Vocal Folds.

Purpose: Our goal was to test prevailing assumptions about the underlying biomechanical and aeroacoustic mechanisms associated with phonotraumatic lesions of the vocal folds using a numerical lumped-element model of voice production.

Method: A numerical model with a triangular glottis, posterior glottal opening, and arytenoid posturing is proposed. Normal voice is altered by introducing various prephonatory configurations. Potential compensatory mechanisms (increased subglottal pressure, muscle activation, and supraglottal constriction) are adjusted to restore an acoustic target output through a control loop that mimics a simplified version of auditory feedback.

Results: The degree of incomplete glottal closure in both the membranous and posterior portions of the folds consistently leads to a reduction in sound pressure level, fundamental frequency, harmonic richness, and harmonics-to-noise ratio. The compensatory mechanisms lead to significantly increased vocal-fold collision forces, maximum flow-declination rate, and amplitude of unsteady flow, without significantly altering the acoustic output.

Conclusion: Modeling provided potentially important insights into the pathophysiology of phonotraumatic vocal hyperfunction by demonstrating that compensatory mechanisms can counteract deterioration in the voice acoustic signal due to incomplete glottal closure, but this also leads to high vocal-fold collision forces (reflected in aerodynamic measures), which significantly increases the risk of developing phonotrauma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app