Add like
Add dislike
Add to saved papers

Data driven flexible backbone protein design.

Protein design remains an important problem in computational structural biology. Current computational protein design methods largely use physics-based methods, which make use of information from a single protein structure. This is despite the fact that multiple structures of many protein folds are now readily available in the PDB. While ensemble protein design methods can use multiple protein structures, they treat each structure independently. Here, we introduce a flexible backbone strategy, FlexiBaL-GP, which learns global protein backbone movements directly from multiple protein structures. FlexiBaL-GP uses the machine learning method of Gaussian Process Latent Variable Models to learn a lower dimensional representation of the protein coordinates that best represent backbone movements. These learned backbone movements are used to explore alternative protein backbones, while engineering a protein within a parallel tempered MCMC framework. Using the human ubiquitin-USP21 complex as a model we demonstrate that our design strategy outperforms current strategies for the interface design task of identifying tight binding ubiquitin variants for USP21.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app