Add like
Add dislike
Add to saved papers

Novel Milrinone Nanoformulation for Use in Cardiovascular Diseases: Preparation and in Vitro Characterization.

Cardiovascular diseases are the leading causes of mortality across the globe. Over the years, various drug formulations and delivery methods have been tested for cardiac repair. Milrinone (MRN) is a widely known cardiac inotrope drug used for the treatment of congestive heart failure in patients, however, its efficacy is limited. This study is the first to report the design of a novel MRN-nanoformulation using human serum albumin nanoparticles (HSA-NPs). The HSA-NPs exhibit promising drug delivery characteristics, such as target specificity, nonimmunogenicity, biocompatibility, and enhanced bioavailability. This article describes a MRN-nanoformulation design for in vitro drug release, cellular uptake, biocompatibility, and other features. The MRN-nanoformulation was prepared by the ethanol desolvation technique and key parameters were optimized to obtain a desired particle size of 154.2 ± 5.8 nm, zeta potential of -29.5 ± 2.9 mV, and a drug encapsulation efficiency of 41.1 ± 1.7%. Molecular docking studies have revealed that MRN binds in the hydrophobic cavity of HSA, which has also been indicated by circular dichroism and enzyme-mediated drug release studies in the presence of trypsin, pepsin, proteinase K, protease, and cathepsin D. The intracellular uptake of fluorescently tagged MRN-HSA-NPs using HUVEC and H9c2 cells was evaluated by flow cytometry. The nanoparticle toxicity results indicated that MRN-HSA-NPs show significantly lower cytotoxicity and higher cell viability ( P < 0.0001) as compared to the MRN-lactate drug in HUVEC (61.6 ± 3.7% vs 36.2 ± 2.9%) and H9c2 (58.8 ± 5.7% vs 18.8 ± 4.9%) cells. These studies indicate that the novel MRN-nanoformulation offers better drug delivery procedures than currently used methods and has potential in treatment of congestive heart failure and other cardiovascular diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app