Add like
Add dislike
Add to saved papers

Designing Pd-N-Heterocyclic Carbene Complexes for High Reactivity and Selectivity for Cross-Coupling Applications.

Over the past decade, the use of Pd-NHC complexes in cross-coupling applications has blossomed, and reactions that were either not previously possible or possible only under very forcing conditions (e.g., > 100 °C, strong base) are now feasible under mild conditions (e.g., room temperature, weak base). Access to tools such as computational chemistry has facilitated a much greater mechanistic understanding of catalytic cycles, which has enabled the design of new NHC ligands and accelerated advances in cross-coupling. With these elements of rational design, highly reactive Pd-NHC complexes have been invented to catalyze the selective formation of single products in a variety of transformations that have the potential to afford multiple compounds (e.g., isomers). Pd-NHC catalysts may be prepared as stable Pd(II) precatalysts that are readily reduced to the active Pd(0) species in the presence of an organometallic cross-coupling partner or nucleophile possessing β-hydrogens. It has been found from computational and experimental results that Pd-NHC complexes bearing a single bulky NHC ligand are well-suited to tackle challenging cross-coupling reactions. N-Aryl-substituted imidazole-2-ylidenes with branched alkyl chains at the ortho positions of the aryl group are effective for the challenging couplings of hindered biaryls, secondary alkyl organozincs, electron-deficient anilines, α-amino esters, primary alkylamines, and ammonia. The bulk of the NHC has been tuned by increasing the size of the alkyl groups at the ortho positions and substituting the NHC core with chlorine substituents. All of the cross-coupling transformations studied benefit from the increased bulk when the ortho groups are changed from methyl to 2-propyl to 3-pentyl. However, there is a limit to the positive effect of steric bulk, as some reactions do not benefit from the increased size of the 4-heptyl group compared with 3-pentyl. Thus, there is an optimum size for the NHC ligand that depends upon whether reactivity (turnover frequency and turnover number), selectivity, or both are needed to obtain the desired reaction outcome. In the cases that we have studied, reactivity and selectivity increase together (i.e., the fastest catalyst is also the most selective), allowing cross-couplings to be carried out under mild conditions to obtain one product with high selectivity. This Account focuses on seminal literature reports that have disclosed new Pd-NHC complexes that have led to significant breakthroughs in efficacy for challenging couplings while demonstrating high selectivity for the desired target. These catalysts have been used widely in materials science, pharmaceutical, and agrochemical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app