Add like
Add dislike
Add to saved papers

Stereochemical plasticity modulates cooperative binding in a Co(II)12L6 cuboctahedron.

Nature Chemistry 2017 September
Biomolecular receptors are able to process information by responding differentially to combinations of chemical signals. Synthetic receptors that are likewise capable of multi-stimuli response can form the basis of programmable molecular systems, wherein specific input sequences create distinct outputs. Here we report a pseudo-cuboctahedral assembly capable of cooperatively binding anionic and neutral guest species. The binding of pairs of fullerene guests was observed to effect the all-or-nothing cooperative templation of an S6-symmetric host stereoisomer. This bis-fullerene adduct exhibits different cooperativity in binding pairs of anions from the fullerene-free parent: in one case, positive cooperativity is observed, while in another all binding affinities are enhanced by an order of magnitude, and in a third the binding events are only minimally perturbed. This intricate modulation of binding affinity, and thus cooperativity, renders our new cuboctahedral receptor attractive for incorporation into systems with complex, programmable responses to different sets of stimuli.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app