Add like
Add dislike
Add to saved papers

Dietary Genistein Influences Number of Acetylcholine Receptors in Female Diabetic Jejunum.

BACKGROUND: Intestinal dysfunction in the ob/ob mouse model of diabetes mimics that seen clinically.

METHODS: We determined the effects of a 4-week genistein diet (600 mg genistein/kg food) on intestinal function (contractility, morphology, AChR, and motility) in female ob/ob and lean mice.

RESULTS: Contractility of the jejunum in response to incrementally increasing concentrations of KCl was comparable in ob/ob females and lean controls regardless of a genistein-diet. There were no changes in the wall thickness measured. We assessed the number of clusters of AChR in the jejunum wall; AChR were decreased by 48% in ob/ob mice versus leans, and the genistein diet reversed this. In utilizing a video-imaging system to evaluate gastrointestinal motility, we determined that the distance between consecutive contractile events was significantly increased by 1.87-fold in ob/ob mice versus leans, and the genistein diet was without effect.

CONCLUSIONS: These data suggest that slowed intestinal transit in the diabetic ob/ob mouse may be due in part to decreased AChR and decreased contraction events occurring per unit time. A genistein diet rescues the number of AChR to levels of leans yet did not change the number of contractile events. Feeding ob/ob mice a genistein-rich diet has potential therapeutic benefits towards improving the debilitating diabetes-related gastrointestinal dysfunction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app