Add like
Add dislike
Add to saved papers

Swimming performance in juvenile shortnose sturgeon (Acipenser brevirostrum): the influence of time interval and velocity increments on critical swimming tests.

The most utilized method to measure swimming performance of fishes has been the critical swimming speed (UCrit) test. In this test, the fish is forced to swim against an incrementally increasing flow of water until fatigue. Before the water velocity is increased, the fish swims at the water velocity for a specific, pre-arranged time interval. The magnitude of the velocity increments and the time interval for each swimming period can vary across studies making the comparison between and within species difficult. This issue has been acknowledged in the literature, however, little empirical evidence exists that tests the importance of velocity and time increments on swimming performance in fish. A practical application for fish performance is through the design of fishways that enable fish to bypass anthropogenic structures (e.g. dams) that block migration routes, which is one of the causes of world-wide decline in sturgeon populations. While fishways will improve sturgeon conservation, they need to be specifically designed to accommodate the swimming capabilities specific for sturgeons, and it is possible that current swimming methodologies have under-estimated the swimming performance of sturgeons. The present study assessed the UCrit of shortnose sturgeon using modified UCrit to determine the importance of velocity increment (5 and 10 cm s(-1)) and time (5, 15 and 30 min) intervals on swimming performance. UCrit was found to be influenced by both time interval and water velocity. UCrit was generally lower in sturgeon when they were swum using 5cm s(-1) compared with 10 cm s(-1) increments. Velocity increment influences the UCrit more than time interval. Overall, researchers must consider the impacts of using particular swimming criteria when designing their experiments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app