JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

The systematics and biogeography of African tailorbirds (Cisticolidae: Artisornis) with comment on the choice of Bayesian branch-length prior when analyzing heterogeneous data.

The Long-billed Tailorbird (Artisornis moreaui), one of Africa's rarest birds, has a strikingly disjunct distribution, the origin of which has long puzzled biogeographers. One small population (subspecies moreaui) occurs in sub-montane forest in the East Usambara Mountains, a sky island near the coast of northern Tanzania, and another (subspecies sousae) on Serra Jeci in northwestern Mozambique, 950km away. The African Tailorbird, the putative sister-species of Long-billed Tailorbird, also occurs in the East Usambara Mountains and on Serra Jeci, but in addition occupies all the Eastern Arc Mountain forests between these disjunct sites. Stuart (1981) hypothesized that the two tailorbird distributions could be explained by strong ecological competition, with African Tailorbird populations having eliminated Long-billed Tailorbird populations via competitive exclusion in montane forests between the East Usambara and Serra Jeci. If such competitive exclusion explains these geographic distributions, the co-occurrence of the two species in the East Usambara and at Serra Jeci may be ephemeral, with the status of Long-billed Tailorbird especially in doubt. We sought to (1) determine whether the two species of African tailorbirds are indeed sister-species, and (2) test predictions from Stuart's (1981) competitive exclusion hypothesis using genetic data. Phylogenetic analyses of our seven gene dataset (3 mtDNA, 4 introns; 4784bp) indeed place these two species together in the genus Artisornis. Instead of finding shallow divergence among African Tailorbird populations and deep divergence between Long-billed Tailorbird populations as expected from Stuart's hypothesis, we recover deep genetic divergence and geographic structure among populations of both tailorbird species. This result is consistent with long-term co-existence of the two species at East Usambara and Serra Jeci. Observational data from both the East Usambara and Serra Jeci suggest that the two species have diverged in use of forest canopy strata. From a conservation standpoint, our results suggest that extinction of the Long-billed Tailorbird as a function of competition with African Tailorbird is highly unlikely, and should not be viewed as imminent. Threats to its survival are instead anthropogenic, and conservation measures should take this into account. Finally, our empirical results suggest that mis-specification of the branch-length prior in Bayesian analyses of mitochondrial DNA data can have a profound effect on the overall tree-length (sum of branch-lengths), whereas the topology and support values tend to remain more stable. In contrast, mis-specification of the branch-length prior had a lesser impact on all aspects of the nuclear-only DNA analyses. This problem may be exacerbated when mitochondrial and nuclear DNA analyses are combined in a total evidence approach.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app