Add like
Add dislike
Add to saved papers

Weight loss enhances hepatic antioxidant status in a NAFLD model induced by high-fat diet.

Nonalcoholic fatty liver disease (NAFLD) is a benign condition that can progress to more severe liver damage in a process mediated, in part, by disturbances in redox balance. Additionally, some argue that it is set to become the main cause of end-stage liver disease in the near future. Here, we investigated whether diet-induced weight loss is able to reverse hepatic lipid accumulation and reduce oxidative stress in liver from C57BL/6 mice fed a high-fat (HF) diet. Male C57BL/6 mice were divided into 4 groups: standard chow (SC; 10% energy from fat, 16 weeks); HF (50% energy from fat, 16 weeks); SC-HF (SC for 8 weeks followed by HF for 8 weeks); and HF-SC (HF for 8 weeks followed by SC for 8 weeks). The HF diet during 8 (SC-HF) and 16 weeks (HF) downregulated messenger RNA levels and protein expression of Nrf2 and endogenous antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase) in the liver; caused liver steatosis; affected liver function markers; increased intra-abdominal and subcutaneous adipose tissue; and induced glucose intolerance and hypercholesterolemia compared with controls (SC). Diet-induced weight loss significantly reduced the intrahepatic lipid accumulation, improved glucose tolerance, and restored both gene and protein expression of the antioxidant enzymes. Our findings suggest that a dietary intervention aimed to induce weight loss may exert protective effects in NAFLD as it can reduce hepatic oxidative stress and intrahepatic lipid accumulation, which can hinder the progression of this condition to more severe states.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app