Add like
Add dislike
Add to saved papers

Multimodal Generally Recognized as Safe ZnO/Nanocopper Composite: A Novel Antimicrobial Material for the Management of Citrus Phytopathogens.

Copper (Cu) bactericides/fungicides are used extensively for crop protection in agriculture. Concerns for Cu accumulation in soil, Cu leaching into the surrounding ecosystem, and development of Cu resistance in phytopathogenic bacteria are evident. While there is no suitable alternative to Cu available to date for agricultural uses, it is possible to reduce Cu per application by supplementing with Zn and improving Cu bioavailability using nanotechnology. We have prepared a non-phytotoxic composite material consisting of generally recognized as safe ZnO 800 particles and nanocopper-loaded silica gel (ZnO-nCuSi). The morphology of the ZnO-nCuSi material was characterized using scanning electron microscopy, showing ZnO particles dispersed in the silica gel matrix. ZnO-nCuSi demonstrated strong in vitro antimicrobial properties against several model plant bacterial species. Two consecutive year field efficacy results showed that agri-grade ZnO-nCuSi was effective in controlling citrus canker disease at less than half the metallic rate of the commercial cuprous oxide/zinc oxide pesticide.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app