Add like
Add dislike
Add to saved papers

Hard templating ultrathin polycrystalline hematite nanosheets: effect of nano-dimension on CO 2 to CO conversion via the reverse water-gas shift reaction.

Nanoscale 2017 September 15
Understanding how nano-dimensionality impacts iron oxide based catalysis is central to a wide range of applications. Here, we focus on hematite nanosheets, nanowires and nanoparticles as applied to catalyze the reverse water gas shift (RWGS) probe reaction. We introduce a novel approach to synthesize ultrathin (4-7 nm) hematite nanosheets using copper oxide nanosheets as a hard template and propose a reaction mechanism based on density functional theory (DFT) calculations. Hematite nanowires and nanoparticles were also synthesized and characterized. H2 temperature programmed reduction (H2 -TPR) and RWGS reactions were performed to glean insights into the mechanism of CO2 conversion to CO over the iron oxide nanomaterials and were compared to H2 binding energy calculations based on density functional theory. While the nanosheets did exhibit high CO2 conversion, 28% at 510 °C, we found that the iron oxide nanowires had the highest CO2 conversion, reaching 50% at 750 °C under atmospheric pressure. No products besides CO and H2 O were detected.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app