Add like
Add dislike
Add to saved papers

Numerical simulation of a compound capsule in a constricted microchannel.

Simulations of the passage of eukaryotic cells through a constricted channel aid in studying the properties of cancer cells and their transport in the bloodstream. Compound capsules, which explicitly model the outer cell membrane and nuclear lamina, have the potential to improve computational model fidelity. However, general simulations of compound capsules transiting a constricted microchannel have not been conducted and the influence of the compound capsule model on computational performance is not well known. In this study, we extend a parallel hemodynamics application to simulate the fluid-structure interaction between compound capsules and fluid. With this framework, we compare the deformation of simple and compound capsules in constricted microchannels, and explore how deformation depends on the capillary number and on the volume fraction of the inner membrane. The computational framework's parallel performance in this setting is evaluated and future development lessons are discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app