Add like
Add dislike
Add to saved papers

Different route of hydroxide incorporation and thermal stability of new type of water clathrate: X-ray single crystal and Raman investigation.

Scientific Reports 2017 August 23
Chlormayenite Ca12Al14O32[♦4Cl2] (♦-vacancy) is partially hydrated micro porouss mineral with hydroxide groups situated at various crystallographic sites. There are few mechanisms describing its hydration. The first one assumes Cl(-) substitution by OH(-) at the center of the structural cages (W-site). The second one determines the converting a T1O4 tetrahedron to a T1O3(OH)3 octahedron due to the replacement of oxygen at the O2 site by three OH-groups according to the scheme: ((O2)O(2-) +  (W) Cl(-)) → 3 ×  (O2a)OH. The third mechanism, not considered so far in the case of zeolite-like minerals, includes the hydroxide incorporation in form of hydrogarnet defect due to the arrangement of tetrahedral (OH)4 in vacant cages. This yields a strong hydrated phase containing even up to 35% of water more than in any currently known mineral applicable to Portland cement. Moreover, water molecules present in different structural cages are stable up to 355 K while dehydroxylation linked to the gradual loss of only 8% of OH(-) groups according to 3 (O2a)OH(-) → (O2)O(2-) + (W) OH(-) + (g)H2O occurs at temperature range from 355 K to 598 K.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app