Add like
Add dislike
Add to saved papers

Rotational dissociation of impulsively aligned van der Waals complexes.

The nonadiabatic alignment dynamics of weakly bound molecule-atom complexes, induced by a moderately intense 300 fs nonresonant laser pulse, is calculated by direct numerical solution of the time-dependent Schrödinger equation. Our method propagates the wave function according to the coupled channel equations for the complex, which can be done in a very efficient and stable manner out to large times. We present results for two van der Waal complexes, CS2 -He and HCCH-He, as respective examples of linear molecules with large and small moments of inertia. Our main result is that at intensities typical of nonadiabatic alignment experiments, these complexes rapidly dissociate. In the case of the CS2 -He complex, the ensuing rotational dynamics resembles that of isolated molecules, whereas for the HCCH-He complex, the detachment of the He atom severely perturbs and essentially quenches the subsequent rotational motion. At intensities of the laser pulse ≲2.0 × 1012 W/cm2 , it is shown that the molecule-He complex can rotate and align without breaking apart. We discuss the implications of our findings for recent experiments on iodine molecules solvated in helium nanodroplets.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app