Add like
Add dislike
Add to saved papers

Efficient algorithms for large-scale quantum transport calculations.

Massively parallel algorithms are presented in this paper to reduce the computational burden associated with quantum transport simulations from first-principles. The power of modern hybrid computer architectures is harvested in order to determine the open boundary conditions that connect the simulation domain with its environment and to solve the resulting Schrödinger equation. While the former operation takes the form of an eigenvalue problem that is solved by a contour integration technique on the available central processing units (CPUs), the latter can be cast into a linear system of equations that is simultaneously processed by SplitSolve, a two-step algorithm, on general-purpose graphics processing units (GPUs). A significant decrease of the computational time by up to two orders of magnitude is obtained as compared to standard solution methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app