Add like
Add dislike
Add to saved papers

Biochar-induced negative carbon mineralization priming effects in a coastal wetland soil: Roles of soil aggregation and microbial modulation.

Biochar can sequestrate carbon (C) in soils and affect native soil organic carbon (SOC) mineralization via priming effects. However, the roles of soil aggregation and microbial regulation in priming effects of biochars on SOC in coastal wetland soils are poorly understood. Thus, a coastal wetland soil (δ13 C -22‰) was separated into macro-micro aggregates (53-2000μm, MA) and silt-clay fractions (<53μm, SF) to investigate the priming effect using two 13 C enriched biochars produced from corn straw (δ13 C -11.58‰) at 350 and 550°C. The two biochars induced negative priming effect on the native SOC mineralization in the both soil aggregate size fractions, attributed to the enhanced stability of the soil aggregates resulting from the intimate physico-chemical associations between the soil minerals and biochar particles. Additionally, biochar amendments increased soil microbial biomass C and resulted in a lower metabolic quotient, suggesting that microbes in biochar amended aggregates could likely incorporate biomass C rather than mineralize it. Moreover, the biochar amendments induced obvious shifts of the bacterial community towards low C turnover bacteria taxa (e.g., Actinobacteria and Deltaproteobacteria) and the bacteria taxa responsible for stabilizing soil aggregates (e.g., Actinobacteria and Acidobacteria), which also accounted for the negative priming effect. Overall, these results suggested that biochar had considerable merit for stabilizing SOC in the coastal soil and thus has potential to restore and/or enhance "blue C" sink in the degraded coastal wetland ecosystem.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app