Add like
Add dislike
Add to saved papers

Bioinspired Programmable Polymer Gel Controlled by Swellable Guest Medium.

Responsive materials with functions of forming three-dimensional (3D) origami and/or kirigami structures have a broad range of applications in bioelectronics, metamaterials, microrobotics, and microelectromechanical (MEMS) systems. To realize such functions, building blocks of actuating components usually possess localized inhomogeneity so that they respond differently to external stimuli. Previous fabrication strategies lie in localizing nonswellable or less-swellable guest components in their swellable host polymers to reduce swelling ability. Herein, inspired by ice plant seed capsules, we report an opposite strategy of implanting swellable guest medium inside nonswellable host polymers to locally enhance the swelling inhomogeneity. Specifically, we adopted a skinning effect induced surface polymerization combined with direct laser writing to control gradient of swellable cyclopentanone (CP) in both vertical and lateral directions of the nonswellable SU-8. For the first time, the laser direct writing was used as a novel strategy for patterning programmable polymer gel films. Upon stimulation of organic solvents, the dual-gradient gel films designed by origami or kirigami principles exhibit reversible 3D shape transformation. Molecular dynamics (MD) simulation illustrates that CP greatly enhances diffusion rates of stimulus solvent molecules in the SU-8 matrix, which offers the driving force for the programmable response. Furthermore, this bioinspired strategy offers unique capabilities in fabricating responsive devices such as a soft gripper and a locomotive robot, paving new routes to many other responsive polymers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app