Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Using Microbubble as Contrast Agent for High-Energy X-Ray In-line Phase Contrast Imaging: Demonstration and Comparison Study.

The ability of microbubbles to benefit the imaging quality of high-energy in-line phase contrast as compared with conventional low-energy contact mode radiography was investigated. The study was conducted by comparing in-line phase contrast imaging with conventional contact-mode projection imaging under the same dose delivered to a phantom. A custom-designed phantom was employed to simulate a segment of human blood vessel injected with microbubble suspensions. The microbubbles were suspended in deionized water to obtain different volume concentrations. The area contrast-to-noise ratio (CNR) values corresponding to both imaging methods were measured for different microbubble volume concentrations. The phase contrast images were processed by phase-attenuation duality phase retrieval to preserve the imaging quality. Comparison of the resultant CNR values indicates that the microbubble suspension images deliver a higher CNR than the water-only image, with monotonically increasing trends between the CNR values and microbubble concentrations. Compared to low-energy conventional images of the microbubble suspensions, high-energy in-line phase contrast CNRs are lower at high concentrations and are comparable, even better than, at low concentrations. This result suggests that 1) the performance of copolymer-shell microbubble employed in this study as x-ray contrast agent is constrained by the detective quantum efficiency of the system and the attenuation properties of the shell materials, 2) the phase-attenuation duality phase retrieval method has the potential to preserve image quality for areas with low concentration of microbubbles, and 3) the selection of microbubble products as a phase contrast agent may follow criteria of minimizing the impact of absorption attenuation properties of the shells and maximizing the difference factor of electron densities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app