Add like
Add dislike
Add to saved papers

Nocturnal blood pressure fluctuations measured by using pulse transit time in patients with severe obstructive sleep apnea syndrome.

BACKGROUND: Obstructive sleep apnea syndrome (OSAS) is related to arterial hypertension. In the present study, we test the hypothesis that patients with severe OSAS have excessive apnea induced blood pressure (BP).

METHODS: We investigated 97 patients with an apnea/hypopnea index (AHI) greater than 30. Systolic BP (SBP) was continuously determined by using the pulse transit time (PTT). Apnea/hypopnea induced nocturnal BP fluctuations (NBPFs) were detected and showed phenomena of continuous increases of the SBP baseline. Such periods of SBP baseline elevations ≥ 10 mmHg were called superposition. Respiratory and cardiac parameters were obtained from the polysomnographic investigation.

RESULTS: Eighty-four periods of superposition were detected in 48 patients. They occurred mainly during REM sleep (76%). Apnea duration was increased and the time in respiration was reduced in periods of superposition compared to non-superposition periods. In superposition periods mean oxygen saturation (SpO2 ) and the minimal SpO2 were lower, desaturations were more pronounced, and the mean heart rate (HR) was increased. The maximum SBP during superposition was significantly increased (204 ± 32 vs.171 ± 28 mmHg). The clinic BP was higher in patients with superposition (SBP 149.2 ± 17.5 vs. 140 ± 19.1, DBP 91.5 ± 11.5 vs. 86.3 ± 11.8).

CONCLUSIONS: The study reveals that patients with severe OSAS can have periods of BP superposition during night with extremely high SBP and very low oxygen saturation, which may add to a high risk for cardiovascular events during the night.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app