Add like
Add dislike
Add to saved papers

Relative contributions of PGR5- and NDH-dependent photosystem I cyclic electron flow in the generation of a proton gradient in Arabidopsis chloroplasts.

Planta 2017 November
MAIN CONCLUSION: Respective contributions of PGR5- and NDH-dependent cyclic electron flows around photosystem I for generating the proton gradient across the thylakoid membrane are ~30 and ~5%. The proton concentration gradient across the thylakoid membrane (ΔpH) produced by photosynthetic electron transport is the driving force of ATP synthesis and non-photochemical quenching. Two types of electron transfer contribute to ΔpH formation: linear electron flow (LEF) and cyclic electron flow (CEF, divided into PGR5- and NDH-dependent pathways). However, the respective contributions of LEF and CEF to ΔpH formation are largely unknown. We employed fluorescence quenching analysis with the pH indicator 9-aminoacridine to directly monitor ΔpH formation in isolated chloroplasts of Arabidopsis mutants lacking PGR5- and/or NDH-dependent CEF. The results indicate that ΔpH formation is mostly due to LEF, with the contributions of PGR5- and NDH-dependent CEF estimated as only ~30 and ~5%, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app