Add like
Add dislike
Add to saved papers

How do ligands influence the quantum yields of cyclometalated platinum(ii) complexes, a theoretical research study.

A series of cyclometalated platinum(ii) complexes have been investigated with the TDDFT method. These complexes have similar structures but distinct phosphorescence quantum yields. Theoretical calculations were carried out to explain the differences in quantum yields from the conjugation effect of the cyclometalated ligand, molecular rigidity and ligand-field strength of the monodentate ligand. The radiative decay rate constants (kr ) have been discussed with the oscillator strength (fn ), the strength of the spin-orbit coupling (SOC) interaction between the lowest energy triplet excited state (T1 ) and singlet excited states (Sn ), and the energy gaps between E(T1 ) and E(Sn ). To illustrate the nonradiative decay processes, the transition states (TS) between the triplet metal-centered state (3 MC) and T1 states have been optimized. In addition, the minimum energy crossing points (MECPs) between3 MC and the ground states (S0 ) were optimized. Finally, the potential energy curves along the nonradiative decay pathways are simulated. To obtain a phosphorescent complex with a high quantum yield, the complex should retain molecular rigidity well in the S1 and T1 states, while showing significant structural distortion at the MECP structure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app