Add like
Add dislike
Add to saved papers

Copper ferrites@reduced graphene oxide anode materials for advanced lithium storage applications.

Scientific Reports 2017 August 22
Copper ferrites are emerging transition metal oxides that have potential applications in energy storage devices. However, it still lacks in-depth designing of copper ferrites based anode architectures with enhanced electroactivity for lithium-ion batteries. Here, we report a facile synthesis technology of copper ferrites anchored on reduced graphene oxide (CuFeO2@rGO and Cu/CuFe2O4@rGO) as the high-performance electrodes. In the resulting configuration, reduced graphene offers continuous conductive channels for electron/ion transfer and high specific surface area to accommodate the volume expansion of copper ferrites. Consequently, the sheet-on-sheet CuFeO2@rGO electrode exhibits a high reversible capacity (587 mAh g(-1) after 100 cycles at 200 mA g(-1)). In particular, Cu/CuFe2O4@rGO hybrid, which combines the advantages of nano-copper and reduced graphene, manifests a significant enhancement in lithium storage properties. It reveals superior rate capability (723 mAh g(-1) at 800 mA g(-1); 560 mAh g(-1) at 3200 mA g(-1)) and robust cycling capability (1102 mAh g(-1) after 250 cycles at 800 mA g(-1)). This unique structure design provides a strategy for the development of multivalent metal oxides in lithium storage device applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app