JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

In situ nano- to microscopic imaging and growth mechanism of electrochemical dissolution (e.g., corrosion) of a confined metal surface.

Reactivity in confinement is central to a wide range of applications and systems, yet it is notoriously difficult to probe reactions in confined spaces in real time. Using a modified electrochemical surface forces apparatus (EC-SFA) on confined metallic surfaces, we observe in situ nano- to microscale dissolution and pit formation (qualitatively similar to previous observation on nonmetallic surfaces, e.g., silica) in well-defined geometries in environments relevant to corrosion processes. We follow "crevice corrosion" processes in real time in different pH-neutral NaCl solutions and applied surface potentials of nickel (vs. Ag|AgCl electrode in solution) for the mica-nickel confined interface of total area ∼0.03 mm2 The initial corrosion proceeds as self-catalyzed pitting, visualized by the sudden appearance of circular pits with uniform diameters of 6-7 μm and depth ∼2-3 nm. At concentrations above 10 mM NaCl, pitting is initiated at the outer rim of the confined zone, while below 10 mM NaCl, pitting is initiated inside the confined zone. We compare statistical analysis of growth kinetics and shape evolution of individual nanoscale deep pits with estimates from macroscopic experiments to study initial pit growth and propagation. Our data and experimental techniques reveal a mechanism that suggests initial corrosion results in formation of an aggressive interfacial electrolyte that rapidly accelerates pitting, similar to crack initiation and propagation within the confined area. These results support a general mechanism for nanoscale material degradation and dissolution (e.g., crevice corrosion) of polycrystalline nonnoble metals, alloys, and inorganic materials within confined interfaces.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app