Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Prion protein β 2- α 2 loop conformational landscape.

In transmissible spongiform encephalopathies (TSEs), which are lethal neurodegenerative diseases that affect humans and a wide range of other mammalian species, the normal "cellular" prion protein ([Formula: see text]) is transformed into amyloid aggregates representing the "scrapie form" of the protein ([Formula: see text]). Continued research on this system is of keen interest, since new information on the physiological function of [Formula: see text] in healthy organisms is emerging, as well as new data on the mechanism of the transformation of [Formula: see text] to [Formula: see text] In this paper we used two different approaches: a combination of the well-tempered ensemble (WTE) and parallel tempering (PT) schemes and metadynamics (MetaD) to characterize the conformational free-energy surface of [Formula: see text] The focus of the data analysis was on an 11-residue polypeptide segment in mouse [Formula: see text](121-231) that includes the [Formula: see text]2-[Formula: see text]2 loop of residues 167-170, for which a correlation between structure and susceptibility to prion disease has previously been described. This study includes wild-type mouse [Formula: see text] and a variant with the single-residue replacement Y169A. The resulting detailed conformational landscapes complement in an integrative manner the available experimental data on [Formula: see text], providing quantitative insights into the nature of the structural transition-related function of the [Formula: see text]2-[Formula: see text]2 loop.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app