Add like
Add dislike
Add to saved papers

Impact of heterogeneous properties of soil and LNAPL on surfactant-enhanced capillary desaturation.

This paper investigates low-concentration (<1wt%) surfactant flushing when used as a follow-up technology for multiphase vacuum extraction on heterogeneous sites. Challenges posed by soil permeability, pore-size distribution, mineralogy, light non-aqueous phase liquid (LNAPL) weathering and groundwater hardness were quantified through batch and soil column tests. Compatibility issues between the mixed mineralogy soils, hard groundwater, mixed LNAPL and usual anionic surfactants were observed. The selected solution was a Winsor type I system promoting an interfacial tension of 0.06mN/m between the site LNAPL and the amphoteric surfactant CAS in aqueous solution at pH12. Surfactant loses to adsorption and pore media plugging were observed in the fine soil fraction. The capillary desaturation curves (CDC) obtained with the column tests suggested mixed-wettability behavior. The soil permeability strongly influenced LNAPL recovery, as expressed by the relationship obtained between capillary numbers (NCa ) and hydraulic gradients. In this case, the critical NCa , marking the onset of capillary desaturation, could only be obtained with realistic hydraulic gradients in the coarse soil fraction. At those gradients, potential LNAPL recovery was 30% at the most. Unlike previously published CDCs, the relationship between NCa (log-scale) and LNAPL recovery was not linear but dependant on residual LNAPL saturation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app