Add like
Add dislike
Add to saved papers

Acrolein measurement and degradation in Dulbecco's Modified Eagle Medium: an examination of in-vitro exposure metrics.

Acrolein is a reactive α,β-unsaturated aldehyde known for its adduction to endogenous biomolecules, resulting in initiation or exacerbation of several disease pathways. In-vitro systems are routinely used to elucidate the cytotoxic or mechanistic role(s) of acrolein in pathogenesis. Nevertheless, the half-life of acrolein in biological or in-vitro systems, e.g. blood or culture media, has not been well characterized. Since in-vitro cytotoxic and mechanistic investigations routinely expose cultures to acrolein from 1 hour to 72 hours, we aimed to characterize the half-life of acrolein in culture medium to ascertain the plausible exposure window. Half-life determinations were conducted in low-serum DMEM at room temperature and 37 °C, both with and without H9c2 cells. For quantitative assessment, acrolein was derivatized to a fluorescent 7-hydroxyquinoline method validated in-house and assessed via fluorescent spectroscopy. In closed vessel experiments at room temperature, acrolein in DMEM was reduced by more than 40% at 24 hours, irrespective of the initial concentration. Expectedly, open vessel experiments demonstrated accelerated depletion over time at room temperature, and faster still at 37 °C. The presence of cells tended to further accelerate degradation by an additional 15-30%, depending on temperature. These results undermine described experimental exposure conditions stated in most in-vitro experiments. Recognition of this discrepancy between stated and actual exposure metrics warrant examination of novel alternative objective and representative exposure characterization for in-vitro studies to facilitate translation to in-vivo and in-silico methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app