JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Minicircle Versus Plasmid DNA Delivery by Receptor-Targeted Polyplexes.

Human Gene Therapy 2017 October
Due to its minimal size and lack of bacterial backbone sequences, minicircle (MC) DNA presents a promising alternative to plasmid DNA (pDNA) for non-viral gene delivery in terms of biosafety and improved gene transfer. Here, luciferase pDNA (pCMV-luc) and analogous MC DNA (MC07.CMV-luc) were formulated into polyplexes with c-Met targeted, PEG-shielded sequence-defined oligoaminoamides, or linear PEI (linPEI) as standard transfection agent. Distinct physicochemical and biological characteristics were observed for polyplexes formed with either pDNA or MC DNA as vectors. The carriers were found to dominate the shape of polyplexes, whereas the DNA type was decisive for the nanoparticle size. c-Met-targeted, tyrosine trimer-containing polyplexes were optimized into compacted rod structures with a size of 65-100 nm for pDNA and 35-40 nm for MC. Notably, these MC polyplexes display a lack of cell cycle dependence of transfection and a ∼200-fold enhanced gene transfer efficiency in c-Met-positive DU145 prostate carcinoma cultures over their tyrosine-free pDNA analogues.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app