JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Intraoperative subdural low-noise EEG recording of the high frequency oscillation in the somatosensory evoked potential.

OBJECTIVE: The detectability of high frequency oscillations (HFO, >200Hz) in the intraoperative ECoG is restricted by their low signal-to-noise ratio (SNR). Using the somatosensory evoked HFO, we quantify how HFO detectability can benefit from a custom-made low-noise amplifier (LNA).

METHODS: In 9 patients undergoing tumor surgery in the central region, subdural strip electrodes were placed for intraoperative neurophysiological monitoring. We recorded the somatosensory evoked potential (SEP) simultaneously by custom-made LNA and by a commercial device (CD). We varied the stimulation rate between 1.3 and 12.7Hz to tune the SNR of the N20 component and the evoked HFO and quantified HFO detectability at the single trial level. In three patients we compared Propofol® and Sevoflurane® anesthesia.

RESULTS: In the average, amplitude decreased in both in N20 and evoked HFO amplitude with increasing stimulation rate (p<0.05). We detected a higher percentage of single trial evoked HFO with the LNA (p<0.001) for recordings with low impedance (<5kΩ). Average amplitudes were indistinguishable between anesthesia compounds.

CONCLUSION: Low-noise amplification improves the detection of the evoked HFO in recordings with subdural electrodes with low impedance.

SIGNIFICANCE: Low-noise EEG might critically improve the detectability of interictal spontaneous HFO in subdural and possibly in scalp recordings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app