JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Multifunctional Analogs of Kynurenic Acid for the Treatment of Alzheimer's Disease: Synthesis, Pharmacology, and Molecular Modeling Studies.

ACS Chemical Neuroscience 2017 December 21
We report the synthesis and pharmacological investigation of analogs of the endogenous molecule kynurenic acid (KYNA) as multifunctional agents for the treatment of Alzheimer's disease (AD). Synthesized KYNA analogs were tested for their N-methyl-d-aspartate (NMDA) receptor binding, mGluR5 binding and function, acetylcholinesterase (AChE) inhibition, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, interference with the amyloid β peptide (Aβ) fibrillation process, and protection against Aβ-induced toxicity in transgenic Caenorhabditis elegans strain GMC101 expressing full-length Aβ42 . Molecular modeling studies were also performed to predict the binding modes of most active compounds with NMDAR, mGluR5, and Aβ42 . Among the synthesized analogs, 3c, 5b, and 5c emerged as multifunctional compounds that act via multiple anti-AD mechanisms including AChE inhibition, free radical scavenging, NMDA receptor binding, mGluR5 binding, inhibition of Aβ42 fibril formation, and disassembly of preformed Aβ42 fibrils. Interestingly, 5c showed protection against Aβ42 -induced toxicity in transgenic C. elegans strain GMC101. Moreover, 5b and 5c displayed high permeability in an MDR1-MDCKII cell-based model of the blood-brain barrier (BBB). Compound 3b emerged with specific activity as a micromolar AChE inhibitor, however it had low permeability in the BBB model. This study highlights the opportunities that exist to develop analogs of endogenous molecules from the kynurenine pathway for therapeutic uses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app