Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Oligonucleotide Hybridization Combined with Competitive Antibody Binding for the Truncation of a High-Affinity Aptamer.

Truncation can enhance the affinity of aptamers for their targets by limiting nonessential segments and therefore limiting the molecular degrees of freedom that must be overcome in the binding process. This study demonstrated a truncation protocol relying on competitive antibody binding and the hybridization of complementary oligonucleotides, using platelet derived growth factor BB (PDGF-BB) as the model target. On the basis of the immunoassay results, an initial long aptamer was truncated to a number of sequences with lengths of 36-40 nucleotides (nt). These sequences showed apparent KD values in the picomolar range, with the best case being a 36-nt truncated aptamer with a 150-fold increase in affinity over the full-length aptamer. The observed binding energies correlated well with relative energies calculated by molecular dynamics simulations. The effect of the truncated aptamer on PDGF-BB-stimulated fibroblasts was found to be equivalent to that of the full-length aptamer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app