Add like
Add dislike
Add to saved papers

Can red-emitting state be responsible for fluorescence quenching in LHCII aggregates?

Non-photochemical quenching (NPQ) is responsible for protecting the light-harvesting apparatus of plants from damage at high light conditions. Although it is agreed that the major part of NPQ, an energy-dependent quenching (qE), originates in the light-harvesting antenna, its exact mechanism is still debated. In our earlier work (Chmeliov et al. in Nat Plants 2:16045, 2016), we have analyzed the time-resolved fluorescence (TRF) from the trimers and aggregates of the major light-harvesting complexes of plants (LHCII) over a broad temperature range and came to a conclusion that three distinct states are required to describe the experimental data: two of them correspond to the emission bands centered at ~680 and ~700 nm, and the third state is responsible for the excitation quenching. This was opposite to earlier suggestions of a two-state model, where the red-shifted fluorescence and excitation quenching were assumed to be related. To examine such possibility, in the current work we repeat our analysis of the TRF data in terms of the two-state model. We find that even though it can reasonably describe the aggregate fluorescence, it fails to do so for the LHCII trimers. We conclude that the red-emitting state cannot be responsible for fluorescence quenching in the LHCII aggregates and reaffirm that the three-state model is the simplest possible description of the experimental data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app