Add like
Add dislike
Add to saved papers

Kininase 1 As a Preclinical Therapeutic Target for Kinin B1 Receptor in Insulin Resistance.

Kinin B1 receptor (B1R) contributes to insulin resistance, an early event in type 2 diabetes, through the upregulation and activation of the inducible form of nitric oxide synthase (iNOS), pro-inflammatory cytokines and the oxidative stress. This study addresses the hypothesis that inhibition of kininase 1 (carboxypeptidase M, CPM), the key enzyme involved in the biosynthesis of B1R agonists, could exert the same beneficial effects to B1R antagonism in insulin resistance. Male Sprague-Dawley rats were made insulin resistant with a drinking solution containing 10% D-glucose for a period of 9 weeks. Control rats received tap water. During the last week, kininase 1 was blocked with Mergetpa (1 mg kg(-1) twice daily, s.c.) and the impact was determined on insulin resistance (HOMA index), metabolic hormone levels, oxidative stress and the expression of several markers of inflammation by western blot and qRT-PCR. Glucose-fed rats displayed hyperglycemia, hyperinsulinemia, hyperleptinemia, insulin resistance, hypertension, positive body weight gain, and enhanced expression of B1R, CPM, iNOS, and IL-1β in renal cortex, aorta and liver. Markers of oxidative stress (superoxide anion and nitrotyrosine expression) were also enhanced in aorta and renal cortex. Mergetpa reversed and normalized most of those alterations, but failed to affect leptin levels and hypertension. Pharmacological blockade of kininase 1 (CPM) exerted similar beneficial effects to a 1-week treatment with a B1R antagonist (SSR240612) or an iNOS inhibitor (1,400 W). These data reinforce the detrimental role of B1R in insulin resistance and recommend CPM as a new therapeutic target.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app