Add like
Add dislike
Add to saved papers

Cellular Prion Protein Enhances Drug Resistance of Colorectal Cancer Cells via Regulation of a Survival Signal Pathway.

Anti-cancer drug resistance is a major problem in colorectal cancer (CRC) research. Although several studies have revealed the mechanism of cancer drug resistance, molecular targets for chemotherapeutic combinations remain elusive. To address this issue, we focused on the expression of cellular prion protein (PrPC ) in 5-FU-resistant CRC cells. In 5-FU-resistant CRC cells, PrPC expression is significantly increased, compared with that in normal CRC cells. In the presence of 5-FU, PrPC increased CRC cell survival and proliferation by maintaining the activation of the PI3K-Akt signaling pathway and the expression of cell cycle-associated proteins, including cyclin E, CDK2, cyclin D1, and CDK4. In addition, PrPC inhibited the activation of the stress-associated proteins p38, JNK, and p53. Moreover, after treatment of 5-FU-resistant CRC cells with 5-FU, silencing of PrPC triggered apoptosis via the activation of caspase-3. These results indicate that PrPC plays a key role in CRC drug resistance. The novel strategy of combining chemotherapy with PrPC targeting may yield efficacious treatments of colorectal cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app