Add like
Add dislike
Add to saved papers

FTY720/fingolimod, an oral S1PR modulator, mitigates radiation induced cognitive deficits.

Neuroscience Letters 2017 September 30
PURPOSE: This study evaluates FTY720/Fingolimod, modulator of sphingosine-1-phosphate (S1P) receptor, as a potential mitigator of radiation-induced neurocognitive dysfunction.

METHODS AND MATERIALS: To study radiation-induced neurocognitive deficits, 6 week-old C57/Bl/6J mice received 0 or 7Gy cranial irradiation and were treated with FTY720 or vehicle for seven weeks. Fear conditioning and Morris water maze were then employed to test learning and memory. Immunohistochemical staining for neural progenitor cells (NPCs) and mature neurons was used to assess changes in hippocampal neurogenesis. To test effects on tumor growth, mice harboring brain tumor xenografts were treated with FTY720 or vehicle for six weeks.

RESULTS: In irradiated mice, learning deficits were manifested by significantly longer latency times in the Morris Water Maze compared to non-irradiated controls (p=0.001). The deficits were fully restored by FTY720. In irradiated brains, FTY720 maintained the cytoarchitecture of the dentate gyrus granular cell layer and partially restored the pool of NPC. In mice harboring brain tumor stem cell (BTSC) xenografts FTY720 delayed tumor growth and improved survival (p=0.012).

CONCLUSIONS: FTY720 mitigates radiation-induced learning dysfunction. A partial restoration of neurogenesis was observed. Furthermore, FTY720 appears to delay tumor growth and improve survival in a xenograft glioma mouse model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app