Add like
Add dislike
Add to saved papers

BML-111 equilibrated ACE-AngII-AT1R and ACE2-Ang-(1-7)-Mas axis to protect hepatic fibrosis in rats.

BACKGROUND: It was recently reported Lipoxins (LXs) had protective effects on fibrous diseases, and renin-angiotensin-aldosterone system (RAAS) had played vital and bidirectional roles in hepatic fibrosis. In this paper, a hepatic fibrosis model, induced by carbon tetrachloride (CCL4 ) in rats, was used to observe the relations between RAAS and LXs, as well as to further explore the alternative anti-fibrosis mechanisms of LXs.

METHODS: The model was evaluated by morphological observations and biochemical assays. The activities and contents of angiotensin converting enzyme (ACE) and angiotensin converting enzyme 2 (ACE2) were examined through assay kits and ELISA. The expression levels of angiotensinII (AngII), Angiotensin II type 1 receptor (AT1R), angiotensin-(1-7) (Ang-1-7), and Mas were all measured using real time PCR, ELISA, and Western blot.

RESULTS: The model was established successfully and BML-111 significantly ameliorated CCL4 -induced hepatic fibrosis, including reduction inflammation injury, decrease extracellular matrix deposition, and improvement hepatic functions. Furthermore, BML-111 could obviously decrease not only the activities of ACE but also the expression levels of ACE, AngII,and AT1R, which were induced by CCL4 . On the other hand, BML-111 could markedly increase the activities of ACE2, besides the expression levels of ACE2, Ang-(1-7) and Mas. More importantly, BOC-2, a lipoxin A4 receptor blocker, could reverse all these phenomena.

CONCLUSIONS: Equilibrating ACE-AngII-AT1R axis and ACE2-Ang-(1-7)-Mas axis mediated the protective effect of BML-111 on hepatic fibrosis in rats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app