Add like
Add dislike
Add to saved papers

Stimulation of nAchRα7 Receptor Inhibits TNF Synthesis and Secretion in Response to LPS Treatment of Mast Cells by Targeting ERK1/2 and TACE Activation.

The cholinergic anti-inflammatory pathway is recognized as one of the main mechanisms of neuromodulation of the immune system. Activation of the α7 nicotinic acetylcholine receptor (nAchRα7) suppresses cytokine synthesis in distinct immune cells but the molecular mechanisms behind this effect remain to be fully described. Mast cells (MCs) are essential players of allergic reactions and innate immunity responses related to chronic inflammation. Activation of TLR4 receptor in MCs leads to the rapid secretion of pre-synthesized TNF from intracellular pools and to the activation of NFκB, necessary for de novo synthesis of TNF and other cytokines. Here we report that the nAchRα7 receptor specific agonist GTS-21 inhibits TLR4-induced secretion of preformed TNF from MCs in vivo and in vitro. Utilizing bone marrow-derived mast cells (BMMCs) it was found that GTS-21 also diminished secretion of de novo synthesized TNF, TNF mRNA accumulation and IKK-dependent p65-NFκB phosphorylation in response to LPS. nAchRα7 triggering prevented TLR4-induced ERK1/2 phosphorylation, which resulted an essential step for TNF secretion due to the phosphorylation of the metallopeptidase responsible for TNF maturation (TACE). Main inhibitory actions of GTS-21 were prevented by AG490, an inhibitor of JAK-2 kinase. Our results show for the first time, that besides the prevention of NFκB-dependent transcription, inhibitory actions of nAchRα7 triggering include the blockade of pathways leading to exocytosis of granule-stored cytokines in MCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app