Add like
Add dislike
Add to saved papers

Attenuated Activity across Multiple Cell Types and Reduced Monosynaptic Connectivity in the Aged Perirhinal Cortex.

Journal of Neuroscience 2017 September 14
The perirhinal cortex (PER), which is critical for associative memory and stimulus discrimination, has been described as a wall of inhibition between the neocortex and hippocampus. With advanced age, rats show deficits on PER-dependent behavioral tasks and fewer PER principal neurons are activated by stimuli, but the role of PER interneurons in these altered circuit properties in old age has not been characterized. In the present study, PER neurons were recorded while rats traversed a circular track bidirectionally in which the track was either empty or contained eight novel objects evenly spaced around the track. Putative interneurons were discriminated from principal cells based on the autocorrelogram, waveform parameters, and firing rate. While object modulation of interneuron firing was observed in both young and aged rats, PER interneurons recorded from old animals had lower firing rates compared with those from young animals. This difference could not be accounted for by differences in running speed, as the firing rates of PER interneurons did not show significant velocity modulation. Finally, in the aged rats, relative to young rats, there was a significant reduction in detected excitatory and inhibitory monosynaptic connections. Together these data suggest that with advanced age there may be reduced afferent drive from excitatory cells onto interneurons that may compromise the wall of inhibition between the hippocampus and cortex. This circuit dysfunction could erode the function of temporal lobe networks and ultimately contribute to cognitive aging. SIGNIFICANCE STATEMENT We report that lower firing rates observed in aged perirhinal cortical principal cells are associated with weaker interneuron activity and reduced monosynaptic coupling between excitatory and inhibitory cells. This is likely to affect feedforward inhibition from the perirhinal to the entorhinal cortex that gates the flow of information to the hippocampus. This is significant because cognitive dysfunction in normative and pathological aging has been linked to hyperexcitability in the aged CA3 subregion of the hippocampus in rats, monkeys, and humans. The reduced inhibition in the perirhinal cortex reported here could contribute to this circuit imbalance, and may be a key point to consider for therapeutic interventions aimed at restoring network function to optimize cognition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app