Add like
Add dislike
Add to saved papers

Endocrine disrupting effects of waterborne fluoxetine exposure on the reproductive axis of female goldfish, Carassius auratus.

Evidence suggests that pharmaceuticals and personal care products reach urban watersheds, bioconcentrate in fish, and potentially disrupt physiological homeostasis. These impairments often affect hormone functions. Selective serotonin reuptake inhibitors (SRRIs) are increasingly studied with regards to their endocrine disrupting effects on teleost physiological processes, including reproduction. To examine whether FLX effects on the endocrine regulation of reproductive physiology in goldfish are sex-specific, we exposed sexually recrudescent female goldfish to two waterborne concentrations of FLX (0.54μg/L and 54μg/L) using an experimental design previously used for sexually mature male goldfish. To evaluate possible endocrine disrupting effects, we quantified the gonadosomatic index, circulating hormone concentrations (luteinizing hormone, LH; growth hormone, GH; 17-β estradiol, E2 ; and testosterone, T), and the expression of isotocin and vasotocin in the telencephalon, gonadotropin subunits and GH in the pituitary, and gonadotropin receptors, GH receptors, and aromatase in the ovary. Female goldfish exposed to 0.54μg/L FLX exhibited a significant decrease in circulating E2 , and conversely, a significant increase in circulating LH and ovarian aromatase mRNA levels, suggesting disruption of E2 -mediated feedback on LH release. These results, when compared with those previously observed in males, reveal that waterborne exposure to environmentally relevant levels of FLX sex-specifically disrupts the reproductive endocrine axis in goldfish, characterized by a decrease in E2 in females, and conversely, estrogen-like effects in males. These data emphasize the importance of studying the effect of endocrine disrupting chemicals on both sexes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app