Add like
Add dislike
Add to saved papers

Ferritin nanocage with intrinsically disordered proteins and affibody: A platform for tumor targeting with extended pharmacokinetics.

Ferritin nanocages are of particular interest as a novel platform for drug and vaccine delivery, diagnosis, biomineralization scaffold and more, due to their perfect and complex symmetry, ideal physical properties, high biocompatibility, low toxicity profiles as well as easy manipulation by genetic or chemical strategies. However, a short half-life is still a hurdle for the translation of ferritin-based nanomedicines into the clinic. Here, we developed a series of rationally designed long circulating ferritin nanocages (LCFNs) with 'Intrinsically Disordered Proteins (IDP)' as a stealth layer for extending the half-life of ferritin nanocages. Through predictions with 3D modelling, the LCFNs were designed, generated and their pharmacokinetic parameters including half-life, clearance rate, mean residence time, and more, were evaluated by qualitative and quantitative analysis. LCFNs have a tenfold increased half-life and overall improved pharmacokinetic parameters compared to wild-type ferritin nanocages (wtFN), corresponding to the low binding against bone marrow-derived macrophages (BMDMs) and endothelial cells. Subsequently, a tumor targeting moiety, epidermal growth factor receptor (EGFR)-targeting affibody peptide, was fused to LCFNs for evaluating their potential as a theragnostic platform. The tumor targeting-LCFNs successfully accumulated to the tumor tissue, by efficient targeting via active and passive properties, and also the shielding effect of IDP in vivo. This strategy can be applied to other protein-based nanocages for further progressing their use in the field of nanomedicine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app